感知“利”器|一种改进型光学读出红外探测器

工欲善其事,必先利其器。在全球化的今天,专利已不仅仅是创新的一种保护手段,它已成为商业战场中的利器。麦姆斯咨询倾情打造MEMS、传感器以及物联网领域的专利运营平台,整合全产业链知识产权资源,积极推动知识产权保护与有效利用。

光学读出红外探测器的像素结构一般包括:锚、支撑梁(包括双材料梁和隔热梁)和可动微镜。锚站立于衬底之上,可动微镜通过支撑梁与锚相联接,并悬浮于衬底之上。双材料梁一般由两种热膨胀系数相差较大的材料构成,如由金属材料和介质材料构成;隔热梁由热导系数较小的材料构成;可动微镜部分一般包括可见光反射层和红外吸收层。

目前的光学读出红外探测器,一般基于硅衬底进行器件结构和工艺设计,其制作方法可以分为两类:

基于表面微机械加工技术制作的光学读出红外探测器
图1 基于表面微机械加工技术制作的光学读出红外探测器

一类是采用表面微机械加工技术制作(如图1所示),以硅为衬底,以氧化硅、磷硅玻璃、多晶硅为牺牲层,一般采用湿法腐蚀释放像素结构。由于不需要去除衬底硅,器件的机械强度好,像素之间没有热串扰;由于牺牲层厚度只有几微米,采用这种方法制作的光学读出红外探测器阵列释放后的像素很容易和硅衬底发生粘连,另外红外辐射需要透过硅衬底才能入射到像素结构中的红外吸收层上,而硅在8-14μm波长范围内的红外透过率大约为50%左右,也就是说这类器件的红外辐射利用率一般在50%左右。

基于体硅微机械工艺制作的光学读出红外探测器
图2 基于体硅微机械工艺制作的光学读出红外探测器

另一类是采用体硅微机械工艺制作(如图2所示),一般采用深反应离子刻蚀(DRIE)方法去除像素下方的硅衬底释放像素阵列,红外辐射能无遮挡地入射到像素结构中的红外吸收层上,大幅提高了红外辐射的利用率;由于像素结构下的硅衬底被去除,避免了像素和衬底的粘连;但是深反应离子刻蚀过程中高能粒子的轰击会对像素结构带来一定程度的损伤,去除像素下方的硅衬底会造成器件的机械强度下降;另外如果像素下方的硅衬底被全部去除时,像素之间会有严重的热串扰。

在目前的方案中,可见光反射层通常直接沉积在红外吸收层之上,一方面由于双材料效应会导致可动微镜形变,导致器件灵敏度下降;另一方面,可见光反射层面积占整个像素面积的比例较小,像素间无读出信号的空间较大,像素可见光利用率低。

因此,目前的制作方法,还不能同时满足光学读出红外探测器对器件机械强度、热串扰、像素的无损释放、红外辐射利用率、可动微镜平整度和可见光利用率等方面的要求。

【推荐发明专利】

《一种光学读出红外探测器结构及其制作方法》

【发明内容】

本发明提供了一种改进的光学读出红外探测器结构及其制作方法。探测器结构包括:玻璃衬底和通过第二锚悬空于玻璃衬底上的悬浮结构;悬浮结构包括可见光反射层、红外吸收层以及支撑梁。

其中,可见光反射层悬空于上述玻璃衬底,红外吸收层通过第一锚悬空于可见光反射层上,支撑梁悬空于可见光反射层上,并且,支撑梁的一端与同一平面内的红外吸收层相连、另一端通过第二锚固定于玻璃衬底上。

本发明的改进型光学读出红外探测器结构剖视图
图3 本发明的改进型光学读出红外探测器结构剖视图

本发明基于键合技术的光学读出红外探测器阵列的制作方法,具有以下有益效果:

1、增加了第一牺牲层厚度,采用干法释放,确保像素结构的安全释放;

2、以完整的玻璃为衬底,像素结构制作在玻璃衬底上,使器件具有良好的机械强度并避免了像素之间的热串扰;

3、红外辐射直接入射到红外吸收层上,提高了器件的红外辐射利用率;

4、可见光反射层和红外吸收层在空间上被分开,可见光反射层不再存在由于双材料效应导致的变形,并且可见光反射面尺寸的的增加大大提高了可见光的利用率。

【其它红外探测器相关专利】

《一种双光程多气体红外气体传感器》

《一种实现红外焦平面阵列探测器中硅读出电路测试的方法》

《一种具有高占空比的微机械热电堆红外探测器及制作方法》

《非制冷红外探测器的低温真空封装结构及制作方法》

《与互补金属氧化物半导体工艺兼容的微机械热电堆红外探测器及制作方法》

【红外探测器相关报告】

《非制冷红外成像技术与市场趋势-2017版》

《短波红外探测器市场-2016版》

专利购买或技术合作请联系:
麦姆斯咨询 殷飞
联系电话:18912617215
电子邮箱:yinfei@memsconsulting.com
若需要更多可交易专利,敬请访问:www.mems.me/mems/patent/

发表评论

邮箱地址不会被公开。 必填项已用*标注