在现有的中红外集成光电子材料中,“Ⅳ族”半导体材料具有超宽的光谱带宽、出色的光电特性、良好的物理化学稳定性、器件制作与技术兼容等优势,得到了广泛的关注。

这项研究工作中,设计了四个石墨烯基超构原子,通过改变石墨烯的费米能级来调节太赫兹波的偏振态。利用四个选定的石墨烯基超构原子,设计了梯度超构表面、超构透镜和涡旋光束发生器三种动态超构表面来控制反射光束的波前。

超表面在中红外成像的基本原理主要为局域表面等离激元共振、惠更斯原理、传播相位和贝里相位,利用这些原理可以对电磁波的相位、振幅、偏振等进行调控,从而实现透镜成像、偏振控制、涡旋光束生成等功能。

该项研究中展示了一种新型超宽带太赫兹/红外光电探测器。在无任何光耦合结构设计的情况下,这种成像器件具备很宽的光谱探测范围(4-300THz)、快响应速度、低噪声等效功率和高探测率,为发展高温高速的超宽谱光电探测器件奠定了基础。

科研人员提出了一种基于单步制造工艺的红外焦平面阵列(FPA)的设计策略。该焦平面阵列依赖于专门设计的读出电路,可实现平面电场应用和光电导模式工作。科研人员展示了具有15μm像素间距的VGA格式焦平面阵列,其外部量子效率为4~5%(内部量子效率为15%)。

将超构薄膜吸收体与双材料悬臂梁相结合,可以增强对太赫兹能量的吸收,并可将所吸收的能量转化为生物材料悬臂梁的形变。该探测单元可排成阵列从而形成超构材料焦平面阵列(MFPA),当与光学读出系统结合后,该阵列可用于太赫兹实时成像系统。